
# ASSAB 705 M A new concept in machinery steels



# **ASSAB 705M**

## M-STEELS... A new concept in machinery steels

ASSAB M-steels are machinery steels with unique machinability. They are made by a special melting technique which makes it possible to increase the cutting speed by up to 30% or extend the tool life up to four times.

More information about the M-steels can be found in our brochure ASSAB M-STEELS.

## NEAREST STANDARDS

| AISI/SAE | DIN       | W.nr.  | BS                | AFNOR. | JIS   | SS   |
|----------|-----------|--------|-------------------|--------|-------|------|
| 4340     | 34CrNiMo6 | 1.6582 | 817M40<br>(EN 24) | 35NCD6 | SNCM8 | 2541 |

## CHEMICAL COMPOSITION

| C %  | Si % | Mn % | Cr % | Ni % | Mo % |
|------|------|------|------|------|------|
| 0.36 | 0.25 | 0.70 | 1.40 | 1.40 | 0.20 |

### PROPERTIES AND APPLICATIONS

ASSAB 705M is an alloyed machinery steel with good hardenability also in heavier sizes. It combines high strength with best toughness. As standard ASSAB 705M is supplied tough hardened with no further heat treatment required. It can be oil hardened to higher mechanical properties if required.

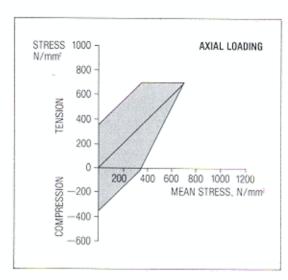
ASSAB 705M is suitable for induction hardening and can also be nitrided or tuffrided to a surface hardness of 600—650 Vickers.

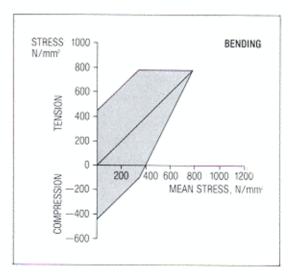
ASSAB 705M is not suitable for welding but can with certain precautions be repair welded.

#### SIZE RANGE

ASSAB 705M is available in standard sizes:

10—210 mm diameter, unmachined 25—204 mm diameter, pre-machined


In non M-execution ASSAB 705 is available in standard sizes 210 mm to 450 mm diameter.


## MECHANICAL PROPERTIES AS SUPPLIED

| Yield strength, Re   | min. 700 N/mm <sup>2</sup> |
|----------------------|----------------------------|
| Tensile strength, Rm | 900-1100 N/mm <sup>2</sup> |
| Elongation, A5       | min. 12%                   |
| Reduction of area, Z | min. 45%                   |
| Impact strength, KU  | min. 20 J                  |
| Hardness             | 275-335 Brinell            |

The mechanical properties are guaranteed for sizes up to and including 250 mm diameter.

## Fatigue strength diagram according to Goodman (Smith)





## **CUTTING DATA**

## Turning with coated carbide tools P15

## **ROUGHTURNING**

Tool life  $T = 15 \, min$ 

| Feed<br>s<br>mm/r | Cutti   | ng depth a | Power |                                  |  |
|-------------------|---------|------------|-------|----------------------------------|--|
|                   | <2      | 2-5        | >5    | requirement<br>per cutting depth |  |
|                   | Cutting | g speed v, | m/min | kW/mm                            |  |
| 0.25              | 290     | 260        | 230   | 3.7                              |  |
| 0.32              | 250     | 230        | 205   | 4.0                              |  |
| 0.40              | 220     | 205        | 185   | 4.2                              |  |
| 0.50              | 200     | 185        | 170   | 4.4                              |  |
| 0.65              | 175     | 160        | 140   | 4.8                              |  |
| 0.80              | 150     | 140        | 120   | 5.2                              |  |

#### FINE TURNING

The feed is determined on the basis of reference radius (nose radius) and desired surface finish

Tool life T = 30 min

| Surface     | Refer       | ence r | adius | r, mm |
|-------------|-------------|--------|-------|-------|
| roughness   | 0.4         | 0.8    | 1.2   | 1.6   |
| $R_a \mu m$ | Anni common | Feed s | , mm/ | r     |
| 0.8         | 0.08        | 0.10   | 0.12  | 0.16  |
| 1.6         | 0.12        | 0.16   | 0.20  | 0.25  |
| 3.2         | 0.16        | 0.20   | 0.25  | 0.32  |
| 6.3         | 0.25        | 0.32   | 0.40  | 0.50  |

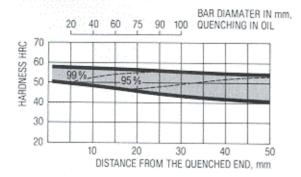
| Recommended cutting speed |                           |  |  |  |  |
|---------------------------|---------------------------|--|--|--|--|
| Feed s, mm/r              | Cutting speed<br>v, m/min |  |  |  |  |
| 0:12                      | 290                       |  |  |  |  |
| 0.16                      | 265                       |  |  |  |  |
| 0.20                      | 240                       |  |  |  |  |
| 0.25                      | 215                       |  |  |  |  |
| 0.32                      | 200                       |  |  |  |  |
| 0.40                      | 180                       |  |  |  |  |

## CORRECTION COEFFICIENTS

|                  |                                                                        | Coefficient for<br>cutting speed |
|------------------|------------------------------------------------------------------------|----------------------------------|
| Tool<br>(coated) | P15<br>P25<br>P35                                                      | 1.00<br>0.95<br>0.85             |
|                  | Forged or rolled surface                                               | 0.7—0.9                          |
| Cutting          | Non-continuous machining<br>or large variations in<br>cutting depth    | 0.8—0.9                          |
| conditions       | Internal turning                                                       | 0.8                              |
|                  | Work piece difficult to<br>machine or poor condition<br>of the machine | 0.7—0.9                          |

## Drilling with high speed steel drills Cutting lubrication, emulsion

|                      |      | Cutting speed v = 20 m/min |                  |                                |                                                | 0 m/min                                         |
|----------------------|------|----------------------------|------------------|--------------------------------|------------------------------------------------|-------------------------------------------------|
| Diam.<br>of<br>drill | Feed | Revolu-<br>tions           | Feeding<br>speed | Power<br>con-<br>sump-<br>tion | Drilling<br>depth<br>to 1st<br>chip<br>removal | Drilling<br>depth<br>to next<br>chip<br>removal |
| d                    | S    | n                          | n x s            | P                              |                                                |                                                 |
| mm                   | mm/r | r/min                      | mm/min           | kW                             | mm                                             | mm                                              |
| 3                    | 0.06 | 1805                       | 108              | 0.2                            | 12                                             | 6                                               |
| 4                    | 80.0 | 1355                       | 108              | 0.2                            | 15                                             | . 8                                             |
| - 5                  | 0.09 | 1080                       | 97               | 0.3                            | 20                                             | 8                                               |
| 6                    | 0.11 | 900                        | 99               | 0.4                            | 25                                             | 10                                              |
| 8                    | 0.14 | 675                        | 95               | 0.6                            | 30                                             | 12                                              |
| . 10                 | 0.17 | 540                        | 92               | 8.0                            | 35                                             | 14                                              |
| 12                   | 0.19 | 450                        | 86               | 1.0                            | 40                                             | 16                                              |
| 16                   | 0.23 | 340                        | 78               | 1.4                            | 50                                             | 20                                              |
| 18                   | 0.25 | 300                        | 75               | 1.6                            | 50                                             | 20                                              |
| 20                   | 0.27 | 270                        | 73               | 1.9                            | 55                                             | 22                                              |
| 25                   | 0.28 | 215                        | 61               | 2.3                            | 65                                             | 24                                              |
| 30                   | 0.29 | 180                        | 52               | 2.7                            | 70                                             | 26                                              |
| 40                   | 0.31 | 135                        | 42               | 3.5                            | 90                                             | 26                                              |
| 50                   | 0.34 | 110                        | 37               | 4.3                            | 110                                            | 26                                              |


## CORRECTION COEFFICIENTS

|                     |                                                          | Coefficient<br>for cutting<br>speed | Coefficient<br>for<br>feed |
|---------------------|----------------------------------------------------------|-------------------------------------|----------------------------|
| Drilling<br>depth I | l = ≤4 × d<br>l = 4 × d — 8 × d                          | 1.00<br>0.80                        | 1.00<br>0.80               |
|                     | Through hole                                             | 0.85                                |                            |
| condition           | Poor condition or<br>lack of stability of<br>the machine | 0.80                                | 0.80                       |
|                     | Especially favour-<br>able machining<br>conditions       | 1.20                                |                            |

The values in the above tables are applicable for ASSAB 705M, tough hardened to 275—335 HB as supplied.

## HEAT TREATMENT

## Hardenability diagram



Tempering at 500-700°C

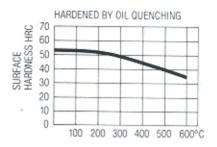
temper immediately afterwards.

Soaking time should be 1-2 hours after the workpiece has attained full temperature throughout.

Hardening at 830—850°C with quenching in oil. Soaking time in minutes when the surface has

attained full temperature, is 0.7 x thickness in

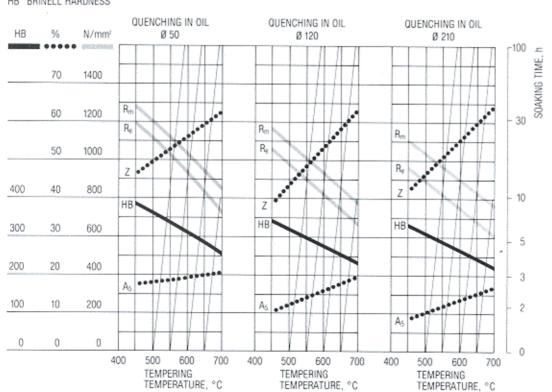
mm. Interrupt the quenching at 125°C and


## Soft annealing at 650—700°C

Soak at temperature for 2 hours. Cool with furnace at a maximum rate of 15°C per hour down to 600°C, and then freely in air.

## Stress relieving at 450-650°C

Tough hardened steel should be heated to approximately 50°C below the temperature at which tempering was carried out (as standard ASSAB 705M is supplied tempered at 600°C and should, then, be stress relieved at 550°C). Soak for 1/2-2 hours after the material has reached full temperature. Cool with furnace down to 450°C, and then freely in air.


## Tempering diagram



## Effect of tempering temperature on the mechanical properties

- YIELD STRENGTH OR 0.2% PROOF STRESS, N/mm2
- ELONGATION AFTER ERACTURE MEASURING LENGTH 5XD, %
- TENSILE STRENGTH, N/mm²
- REDUCTION OF AREA, %
- HB BRINELL HARDNESS

TESTPIECE HARDENED BY OIL: QUENCHING FROM 850°C

